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Abstract 
The Simulated Warfare Environment Data Transfer (SWEDAT) is a shared memory 
interface currently managed by the Joint Integrated Mission Model (JIMM).  It allows 
integrated operation of resources whereby the JIMM threat environment, stimulators, 
virtual cockpits, systems under test, and other agents are combined within the same 
simulation exercise.  The Air Combat Environment Test and Evaluation Facility 
(ACETEF), the Joint Strike Fighter (JSF) Program, and other agencies use it extensively 
for both constructive analyses and real-time installed system test.  Since its creation, 
JIMM and SWEDAT have been enhanced to improve capability and performance.  More 
recent improvements include message queues, alternative coordinate systems, and 
dynamic simulated system control.  This paper will describe the SWEDAT architecture, 
recent improvements, and planned efforts to further performance. 

JIMM and SWEDAT 
The Joint Integrated Mission Model (JIMM) is a general-purpose mission-level discrete-
event simulator [Lat05].  The NAVAIR Air Combat Environment Test and Evaluation 
Facility (ACETEF), the Joint Strike Fighter (JSF) program, and many other efforts 
employ it for constructive analyses, training, and installed system test.  JIMM is currently 
supported on Windows (2000 and XP), Linux, Silicon Graphics, and Solaris computer 
systems. 
 
Systems in JIMM are explicitly represented.  However, they are not modeled using 
detailed physics.  Instead, each system operates in an “effects-based” manner.  This 
simplifies internal calculations and permits thousands of platforms and component 
systems to interoperate while still maintaining real-time operation. 
 
Thinking logic is controlled within JIMM players.  Information used by this logic is 
based on perceptions.  A perception is the specific data one player has about a platform.  
The only sources of this data are initialization, sensing, or communication.  Hence, the 
perception’s data need not reflect “ground-truth” and can be both out of date and 
incorrect.   
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A player also controls resources.  These resources are encapsulated within systems that 
can be distributed onto different platforms at different locations.  There are eight different 
system types:  Sensor Receivers, Sensor Transmitters, Communication Receivers, 
Communication Transmitters, Weapons, Disruptors (Jammers), Movers, and Thinkers.  A 
platform can have any number of systems with the exception that a platform can have no 
more than one mover system. 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
Figure 1 – JIMM Player Construction 

 
JIMM works with other simulation tools via a shared-memory protocol known as 
Simulated Warfare Environment Data Transfer (SWEDAT).  The shared memory can be 
either internal to the computer or can be distributed via reflective shared memory.  In 
either case, processes assessing this shared memory (including JIMM) are known as 
“assets”. 
 
The SWEDAT protocol requires that one asset act as the “master model”.  The master 
model initializes the shared memory and configures it for use by the other assets.  It also 
controls the memory and allocates it as needed to other assets.  In this manner, the master 
model ensures that the integrity of the shared memory map is maintained.  Normally, 
JIMM serves as the master model.  It receives instructions about other assets via an input 
file known as the “Configuration Data Base” (CDB) and organizes the shared memory 
accordingly. 
 
Some assets may passively view the JIMM simulation.  However, JIMM allows other 
assets to assume control of specific systems.  Hence, via interaction through SWEDAT, 
the asset can act and react as if it were working in the JIMM virtual environment.  Also, 
an asset need not control all of the systems of a platform.  One asset could control its 
weapons, another asset could control its mover system, and JIMM could control the 
remainder.  Commonly, if the number of systems controlled is small compared to the 
remainder of the simulation and if those systems are part of a test or analysis, then JIMM 
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is also said to provide the “threat environment” and operate as the “threat environment 
generator”. 
 
Some assets are standalone and interoperate with other assets solely via SWEDAT.  
However, many assets are actually interfaces.  An interface (I/F) is a process that 
interacts with the shared memory and another process via some other protocol.  This 
other process can be a viewer, a stimulator or another simulation.  In addition, the other 
protocol can be a direct method such as a process specific shared memory or a distributed 
environment such as the Distributed Interoperable Simulation (DIS) or the High Level 
Architecture (HLA). 
 
 
 
 
 
 
 
  
 
 
 
 
Figure 2 – Integrated Operation via SWEDAT 

 

Multiple Coordinate Systems 
SWEDAT currently supports two sets of coordinate systems.  Each coordinate system is 
also supported by JIMM. 
 
The first coordinate system is based on a flat tangential plane with a scenario center at 
some point on the earth.   The ‘X’-coordinate roughly corresponds to ‘east’; the ‘Y’-
coordinate roughly corresponds to ‘north’; and the ‘Z’-coordinate is up.  By default, 
JIMM employs an orthogonal projection between the earth and the flat surface but can 
also be directed to use a transverse-mercator projection as well. 
 
The other coordinate system places the origin at the center of the earth [TRW02b].  The 
‘X’-coordinate intersects the earth at the equator and at zero degrees longitude; the ‘Y’-
coordinate intersects the earth at the equator and the prime meridian; and the ‘Z’-
coordinate in through the poles.  This latter coordinate system is also known as “Earth-
Centered Earth-Fixed” (ECEF).  This coordinate system is assumed to be independent of 
the model of the earth (spherical or ellipsoidal). 

Versions of SWEDAT 
Within the JIMM community, there are some naming issues regarding SWEDAT.  
SWEDAT was once implemented using a version of shared memory known as “Multiport 
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Memory”.  Hence, the term ‘MPM’ had previously been used instead of SWEDAT and 
can still be seen in the JIMM instruction set.   
 
In addition, SWEDAT is also known as the JIMM Shared Memory Interface (JSMI).  
This is how it is referenced in the JIMM Documentation.  However, the term JSMI is no 
longer preferred by some individuals because of plans to allow other models and 
simulators to act as the “master model”.   
 
Lastly, there are currently three supported versions of the shared memory map used 
within SWEDAT.   
1. A version with 32-bit floating-point precision that is backward compatible to all 

interfaces written for JIMM 2.2 and previous versions. 
2. A version with 64-bit floating-point precision employed when greater accuracy is 

required such as when used the ECEF coordinate system.  Members in SWEDAT 
data structures were rearranged to avoid problems with padding and to ensure 
alignment.  This version was written for JIMM 2.3. 

3. A version with 32-bit floating-point precision where the order of members in 
SWEDAT data structures match the 64-bit version.  

 
During JIMM 2.3 and later, the term “SWEDAT” was used to specifically indicate the 
older version of the shared memory map.  However, unless other specified, topics in this 
paper are pertinent to all supported versions of SWEDAT. 

The JIMMLIB Library and Example Interfaces 
In addition to the simulation model, the JIMM distribution also contains a ‘C’-language 
library for use by asset interfaces.  This library contains numerous procedures for 
purposes such as initialization, identifying controlled systems, finding asset specific 
information, SWEDAT memory access, procedures pertaining to the creation, access, and 
sending of dispatches. 
 
The JIMM distribution also provides several dozen example interfaces.  These include 
interfaces for DIS and HLA environments as well as assets specific to many commonly 
known asset types. 
 
A current effort is to transparently expand the library by adding C++ language capability 
while allowing use of the same library for ‘C’-language interfaces [Bal95].  This effort 
also includes software to automatically convert floating-point and integer representations 
to a common format as well as the ability to transmit SWEDAT information via a 
distributed network.  Another effort to provide SWEDAT information via MPI has also 
been reported [Jones05].  

Systems controlled by assets 
Specific instructions about the functions in the systems controlled by assets are provided 
in JIMM through the Configuration Data Base (CDB).  The CDB is a text file with 
instructions that include identification of assets, how they communicate, and initialization 
information. 



 
Instructions specific to an existing player are roughly divided into three types:  stimuli, 
decisions, and responses.  Stimuli are dispatches from JIMM to the asset.  Decisions are 
instructions as to which systems and which system functions the asset will control.  
Lastly, responses are dispatches from the asset back to JIMM. 
 
In the following example (Figure 3), the asset will control some parts of the 
“vis_fighter_a/c” platform in the “71 vis_fighter” player.  The specific platform must be 
identified since a player may have multiple platforms.  From the STIMULI instructions, 
the asset will be informed whenever the fighter creates a new player and whenever it 
attempts to sense another player.  From the DECISIONS, the asset will control movement 
(including when it crashes), weapon firing, and the changing of its signature (how well it 
is seen by other sensors).  Other systems and functions will be controlled by JIMM.  
Lastly via RESPONSES, the asset will provide position and orientation (e.g. 
MANUEVER) information about the platform back to JIMM. 
 
More recently, there has also been significant work in JIMM and SWEDAT to change the 
control of a system during a simulation run and also to dynamically change whether 
output is provided to an asset.  This capability is also known as “dynamic asset 
allocation” [Mut02].  To assume control of a system (in whole or in part), an asset need 
only send a specific dispatch identifying the system and any specific system functions. 
 
ASSET: 30 MFS 
   EXISTING-PLAYER  71 vis_fighter  PLATFORM 1 vis_fighter_a/c 
      STIMULI: 
         CORRELATED-FIRING/BIRTH-ANNOUNCEMENT 3 BUFFERS  
         PLATFORM-UNDER-TEST-IDENTITY $ only pertinent if  
                                      $ SYSTEM-UNDER-TEST is set. 
         SENSOR-CHANCE-STATUS FOR-THE SNR-RCVR 118 vis_optical-t_rx 
         SENSOR-CHANCE-STATUS FOR-THE SNR-RCVR 119 infrared-x_rx 
      DECISIONS: 
         REACTIVE-MOVEMENT 
         CRASH-CALCULATIONS 
         LETHAL-ENGAGE-QUEUE-ADD 
            THE 116 vis_dumb_bomb WEAPON 
            FOR ALL TARGETS 
         END LETHAL-ENGAGE-QUEUE-ADD 
         LETHAL-ENGAGE-FIRING-START 
            THE 116 vis_dumb_bomb WEAPON 
            FOR ALL TARGETS 
         END LETHAL-ENGAGE-FIRING-START 
         DYNAMIC-SIGNATURE-CHANGES 
            THE 15 vis_fighter_ele ELEMENT 
         END DYNAMIC-SIGNATURE-CHANGES 
      RESPONSES: 
         MANEUVER 
         DECISION-TO-FIRE 2 BUFFERS 
            THE 116 vis_dumb_bomb 
   END EXISTING-PLAYER 
END ASSET 
Figure 3 – CDB Instructions for a Single Player Asset 



Position, Orientation, and State Information 
Position and orientation (P&O) information is exchanged between JIMM and assets 
through specific blocks of shared memory.  JIMM (acting as master model) creates a 
specific block in shared memory for each player, platform, and for the sensor systems, 
communication systems, disruptors, and weapon systems.  Player and system blocks do 
contains some specific state information.  However, since platforms are limited to one 
mover system, the position and orientation information is provided via the platform 
block. 
 
When JIMM provides P&O information, it obtains the position, velocity, orientation, 
acceleration for a given simulation time.  It then echoes this information (including the 
simulation time of the update) into the platform block.  The asset samples this block and 
then uses the information as suits its needs.  In a similar manner, when another asset 
controls the platform movement, the asset will provide the information and JIMM will 
sample and update its information on a periodic basis. 
  
In the earliest versions of SWEDAT, there was an attempt to better ensure that the entire 
block of data corresponded to the specified time.  In other words, the block would be 
written in an atomic fashion.  A field was added to the platform block and initialized to 
zero.  Assets reading the block would wait until the field was non-negative, increment the 
field count, read the data, and then decrement the count.  Assets writing the block would 
wait until the field was zero, decrement the count, update the information, and then 
increment the count. 
 
However, this attempt at coordination was abandoned.  First, it did not fully provide 
mutual exclusion since there was still a possibility that one asset could be reading the 
data at the same time another asset was writing.  Hence, the method’s designation in the 
documentation is a misnomer.  In addition, significant time was lost while one asset 
waited for another asset to free the block.  A method using coroutines could have been 
implemented where ‘ownership’ of the block is transferred between assets.  This would 
have solved the mutual exclusion problem but would not have solved the performance 
issues.  In short, it was determined that the loss in performance was not worth as much as 
the assurance that the block corresponded to the specified update time - especially given 
the low probability that a reading asset and writing asset would access the block 
simultaneously.  This probability is further reduced with the convention that the update 
time provided in the block is always the last data element modified.  Lastly, in the rare 
case where that does occur, it is assumed that the update time is sufficiently frequent that 
the error of using ‘older’ data as part of an update is acceptable. 
 
Even so, it is still assumed that the individual data items (i.e. integers and real numbers) 
are written atomically.  This can be an issue in cases where the underlying hardware for 
reflective shared memory assumes that variables are no more than 32 bits in size and the 
use of the 64-bit shared memory map is desired. 
 
Another issue that has arisen in JIMM is how “spread out” the update instructions should 
be.  Initially, the update was executed for each instruction.  However, if the instruction 



pertained to a large number of platforms, then the time to execute the instruction could be 
large and this would cause periodic slowdowns in the performance of the simulation.  To 
handle this problem, an event was created for each player.  Furthermore, after 
initialization, the simulation time of the first update events was uniformly distributed 
given the update period.  Hence, the processing of asset positions is now more evenly 
distributed. 

P&O Updates from JIMM to Assets 
Providing P&O information from JIMM to shared memory is a straightforward process.  
At simulation start, an event is created for each update.  During event execution, the P&O 
information is obtained and echoed.  A future event is then created given the defined 
update period. 
 
Information should only be updated if it changes.  If it doesn’t change, then only the 
update time in the block is changed.  This reduces performance overhead. 
 
Another attempt to reduce cost was to allow the user to specify whether certain 
information was required.  For example, JIMM will provide orientation as both forward 
and up vectors as well as roll, pitch, and yaw.  If all assets in the exercise do not need to 
read the specific information, there is no need for JIMM to report it.  Thereby, CDB 
instructions exist to inform JIMM not to provide the unneeded information.  An example 
is provided below (where in JIMM, end of line comments are provided using the ‘$’ 
character). 
 
$ 
$ The following specifications determine how orientation of platforms  
$ is sent to the assets from JIMM. 
$ 
$     SEND-BOTH-VECTORS/ANGLES 
      SEND-ROLL/PITCH/HEADING 
Figure 4 – Instructions to Reduce Output Provided by JIMM 

The period by which JIMM provides P&O information is also specified in the CDB.  
JIMM can also “smooth” its output of acceleration and orientation rates by averaging 
them with the values a small previous and the expected values a small time ahead.  This 
modification of function is provided via the word “SMOOTHED” in the update 
instructions.  An example of this instruction set is below.  The “huge_bomber” and 
“sar_drone” are players in the scenario. 
 
      UPDATE-MPM 
         BY-TYPE    huge_bomber            EVERY  1.0 (SEC) 
         BY-TYPE    sar_drone    SMOOTHED  EVERY  2.0 (SEC) 
         ALL-OTHERS EVERY 2.0 (SEC) 
      END UPDATE-MPM 

Figure 5 – Update Instructions for Data from JIMM 

A major issue with JIMM updates is the effect of interpolation between updates.  In many 
cases (especially when the updates are several seconds apart), the position subsequently 
reported by JIMM may not correspond with the position dead reckoned by the asset.  This 



can be a problem especially in assets providing visual displays.  A common phenomenon 
is for platforms to “jitter” on the display as they are updated.   
 
Methods to limit the impact of jitter including “smoothing” the output given the different 
between the current displayed and the current reported position and orientation.  In 
addition, the update rate can also be increased.  For the future, plans exist to provide 
information pertaining to the next future path waypoint via a dispatch.  Routines will be 
made available in JIMMLIB to interpolate the exact position in the JIMM simulation 
given a specific time.   
 
Another problem manifests itself when the number of platforms in the scenario becomes 
large.  Inspecting each every platform block and determining the reported location can be 
costly.  However, a common method of avoiding this cost is to add a sensor to the 
platform specification.  The sensor operates at the pertinent range and is programmed to 
only examine platforms of interest.  A SENSOR-CHANGE-STATUS stimulus dispatch 
can then be sent to the asset.  This dispatch will indicate when a platform becomes visible 
and when it is immediately out of range.  Each for this immediate dispatch, no other 
dispatches occur when the platform is not visible.  In this manner, JIMM can filter the 
platform information for the asset.   

P&O Updates from Assets to JIMM 
Reading P&O information from assets into JIMM has a set of issues that corresponds 
roughly with sending the data out from JIMM.  However, one issue that is not addressed 
is when JIMM should consider the updated information.  When provided by an asset, 
each P&O update for JIMM can be a costly operation.  Therefore, it is highly desirable to 
minimize the updates as much as possible. 
 
To minimize updates, JIMM currently provides thresholds for distance and angles.  A 
distance threshold is the distance between the expected and reported positions given an 
update.  In a similar manner, angle threshold is the difference between the expected 
orientation angles for roll, pitch, or yaw and the corresponding reported angles.  If either 
threshold is exceeded, the JIMM updates the position and orientation within the 
simulation. 
 
Distance threshold can also be specified as a percentage.  In this case, JIMM divides the 
difference in distance by the distance between the location given at the last asset update 
and the current location.  This value is then compared against the value in the CDB 
instructions. 
 
      MOTION-UPDATES-FROM-MPM 
         BY-PLAYER  71 vis_fighter              EVERY  1.0 (SEC) 
            USING POSITION-THRESHOLD 2.0 PERCENT 
            AND ANGLE-THRESHOLD 1.5 DEG 
      END MOTION-UPDATES-FROM-MPM 
Figure 6 – CDB Instructions for Updates from an Asset to JIMM 

In handling updates from assets, JIMM does make some simplifications.  First, it assumes 
that updates are point-to-point and not curved in arcs.  In other words, the platform’s path 



can be expressed as a series of line segments.  Furthermore, when JIMM receives an 
update, it avoids reaching the end of the platform’s path by dead reckoning the path as a 
straight line to the edge of the scenario. 
 
 
 
 
 
 
 
 
Figure 7 – Paths Generated Given Updates to JIMM 

 
JIMM also assumes that the position reported by the asset is truthful and must be updated 
immediately.  This causes a problem with “past history” since the path represented in 
JIMM will be updated and a location as previously noted for in a time in the past may not 
remain the same.  This will have an effect on the scenario.  For example, a sensing may 
have occurred on the projected path that would not have occurred on the path after it was 
adjusted.  This effect is especially visible for platforms during turns and when the period 
between updates is sufficiently large.  In most cases however, the expected error is 
assumed to be sufficiently small. 
 
Thresholds can contribute to the scope of this error since the time of the last update was 
either the initial time or the time the threshold was last exceeded.  Hence, the interval of 
time of altered “past history” could be large especially when platforms controlled by 
assets traveled in straight lines.  However, modifications in JIMM to reduce the scope of 
the path change to the point where the last update would have occurred also reduces the 
magnitude of the potential error 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8 – Effects of Path Changes in JIMM due to Asset Position Updates 

 
Another problem arose due to problems with different terrain maps.  In some cases where 
different representations of terrain are used, an asset may assume a position is above the 
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ground where JIMM would assume it is below the ground.  To handle this problem, an 
option was added so that an asset could “clamp” the platform to the ground and where 
reported altitude was assumed to “Above Ground Level” (AGL) as opposed to above the 
“Mean Sea Level” (MSL). 
 
JIMM currently also has a limited capability to specify paths via the next waypoint.  In 
this approach, JIMM will still control the movement of the platform and will provide 
specific location information via the platform block in the SWEDAT shared memory.  
However, the asset will specify the next path waypoint via a dispatch.  When the dispatch 
is received, JIMM will adjust the path accordingly.  This adjustment will include 
adjustments for turns, accelerations, and other factors. 
 

JIMM Dispatches 
In addition to position and orientation information, JIMM and assets can also exchange 
information via dispatches.  Dispatches are provided via “mailboxes” that may be thought 
of as a unidirectional channel.  Mailboxes are automatically established by JIMM (when 
acting as the master model) from itself to each other asset and also from each asset back 
to itself.  Instructions also exist in the CDB to allow users to establish additional 
mailboxes between other pairs of assets. 
 
JIMM Dispatches are communicated via two general methods: Dispatch Lists and 
Queues.  The method used by a mailbox is specified in JIMM though the CDB 
instructions.  The dispatch list method is the default. 
 
Dispatch types are distinguished by a unique integer known as the action code and in 
general, have a defined size and structure.  When instantiated, the shared memory 
associated with the dispatch is known as a “template”.  When a dispatch is to be read by 
the mailbox recipient, the action code is positive.  When read, the action code is set to its 
negative inverse.  This indicates that the associated memory may be reused.   

Dispatch Lists 
The dispatch list is the older method of asset communication via SWEDAT and many 
interfaces (including examples) still employ the method.   A dispatch list is actually a list 
of templates.  Receiving assets move from the head of the list to the tail of the list and 
inspect each of the action codes.  If the action code is positive, it reads the information 
and reverses its sign. 
 
 
 
 
 
 
 
 
Figure 9 – Dispatch List Structure 
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When using dispatch lists, the dispatch templates must be created by JIMM during 
initialization or during runtime.  A special dispatch template is provided on all dispatch 
lists for the request of additional templates.  Assets search their list for this template, fill 
in the appropriate information, and then set the action code.  JIMM will receive the 
message, create the template, and send a specific message in reply.  This message will 
contain the address of the new message template. 
 
The use of dispatch lists has a number of problems.   
1. When there is a lot of communication, the number of templates the asset must 

continually inspect will be large and thus, can also have a large performance cost. 
2. A dispatch that is only used once will have a performance impact throughout the 

course of the simulation run. 
3. A large number of templates can consume a large amount of shared memory that 

cannot be safely reused. 
4. The requirement to have JIMM create the template can introduce significant delays in 

interface processing. 
5. There is no guarantee that dispatches will be received in the same order that they are 

sent. 
6. Dispatches in mailboxes between different assets (other than JIMM) are restricted to 

using predefined templates. 
 
There have some attempts to mitigate some of the problems.  Some assets will restrict the 
number of templates inspected to a specified number.  However, this introduces 
additional delays in dispatch delivery.  Interfaces can also obtain templates in anticipation 
of later use.  However, this will certainly impact space and may impact performance.  
Lastly, assets may impose their own ordering scheme and delay dispatch delivery until 
such ordering can be determined.  

Dispatch Queues 
Given the problems with dispatch lists, an alternative approach using circular queues was 
developed.  A circular queue is an array.  New dispatches are first written in the 
beginning of the array and subsequent dispatches are written in order.  When the end of 
the array is reached, the dispatch will instead be written back at the array beginning.  
Dispatches are divided into separate blocks.  These blocks are assumed to be contiguous 
and hence, if part of the block would exceed the array size, the whole block is instead 
written from the array beginning.  By default, the size of the queue is set at 10240 
integers but can be explicitly set by an asset.   
 
In SWEDAT, queues also possess a “read” index controlled by the receiving asset and a 
“write” index controlled by the sending asset.  The “read” index indicates the boundary 
of dispatch data read by the asset.  In turn, the “write” index indicates the boundary of 
data “written” by the sending asset. 
 
To send a message, the sending asset first determines the dispatch’s size and then using 
the “write” index, checks to see if the new dispatch would overwrite data not yet read by 
the receiving asset.  If space in the queue is available, the sending asset then constructs a 



template within the queue memory immediately after the position indicated by the write 
index.  This template will have a negative action code.  If space is not available, then the 
sending asset must postpone the sending of the dispatch, discard the dispatch, or 
otherwise handle it.  Procedures are available in JIMMLIB to assist in creating the 
templates.  Once the template is created, the “write” index of the queue is advanced to the 
end of the dispatch.  The sending asset then fills in the information in the dispatch and 
lastly, sets the action code to its positive value. 
 
 
 
 
 
 
 
Figure 10 – Dispatch Queues 

 
To receive a message, the receiving asset inspects the “read” index.  If the “read” index is 
not equal to the “write” index, then a new dispatch has been created.  The receiving asset 
then inspects the new dispatch’s action code to see if it is positive.  If so, then the 
receiving asset retrieves the information and then advances the “read” index to the end of 
the dispatch.  Many assets will also set the dispatch’s action code back to its negative 
value but this is not required when using queues. 
 
Using queues avoids many of the problems with dispatch lists. 
1. Comparing the “read” and “write” indices easily determines the availability of new 

templates. 
2. Other dispatches can reutilized space used by read dispatches once the queue “wraps 

around”. 
3. The amount of shared memory dedicated to dispatches is fixed. 
4. Assets create their own dispatch template without intervention by JIMM. 
5. Messages will always be received in the same order they were sent. 
6. Dispatches sent between different assets are not restricted to templates recognized by 

JIMM.  In fact, they may use whatever template format they deem suitable. 
7. Dispatches need not be a fixed size but only have to observe the limits inherent in the 

queue. 
  
The implementation of queues however has not been without its difficulties.  The main 
issue has been what to do when the queue fills up.  In the initial implementation, JIMM 
would report the problem and then stop execution.  However, this was not a satisfactory 
solution.  Another implemented approach was to discard dispatches if a problem would 
result.  However, this solution was not satisfactory because it gave older (and perhaps no 
longer necessary) dispatches a higher priority.  Furthermore, there was no way to judge 
the relative importance of the dispatches lost versus dispatches retained.  Another 
implemented approach was to double the size of the queue.   
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The last and most current approach is for JIMM to save dispatches on an “overflow” 
queue.  This queue stows the dispatches in system memory in a first-in-first-out (FIFO) 
order.  When memory in the queue is freed, dispatches from the overflow queue are 
written in.  Newer dispatches are added to the overflow queue in cases where it is still not 
empty.  In any case, should queue overflow be a problem, the recommended practice is 
still to increase the size of the queue if possible or ensure that the receiving assets reads 
its mail more frequently. 

Dispatch Timing 
With respect to timing, JIMM sends its dispatches as soon as they are generated.  
However, it will only inspect its incoming dispatches on a periodic basis or when it is 
waiting for wall clock time to “catch up” to its simulation game time.  The time of this 
period between reading dispatches was initially fixed at 100 milliseconds.  However, this 
period is now programmable via the CDB. 
 
In addition, JIMM is currently restricted to reading one message per inspection.  It is 
expected that this limit will be retained should dispatch lists be employed.  However, in 
the newer versions of JIMM, dispatches are now transformed into events.  This 
transformation requires much less immediate processing than handling the dispatches 
directly.  Hence, coupled with the use of dispatch queues, multiple dispatches may more 
easily be processed within a single inspection.  
 

Time Synchronization 
During real-time operation, it was initially assumed that each asset could employ its own 
clock and that any skew that might result would be acceptable.  If tighter synchronization 
were required, than assets would employ the time echoed by JIMM into SWEDAT.  
Hence, assets would not project system performance into a time later than the simulation 
game time. 
 
Clocks in JIMM can be either external or internal.  The internal clock is the system clock 
in the computer on which JIMM executes.  The external clock is from another source and 
the time is then echoed by a utility into a specific location in SWEDAT.  JIMM then 
coordinates the scenario using the echoed information as the time source. 
 
 
 
 
 
 
 
 
 
Figure 11 – External Time in JIMM 
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Other approaches have also been used for time synchronization.  For example, a time-
grant approach has been developed for use in HLA exercises [TRW03].  In another 
approach, JIMM will inspect the time reported by assets and only proceed if the 
difference between the current game time and the earliest reported game time is less than 
a specified interval [Mut05b]. 

Clock Flywheel Problem 
One of the major issues that have arisen is how to handle cases where JIMM does not 
meet its real-time deadline.  One simple method is for JIMM to work as fast as possible 
in processing events to have the simulation game time catch up to the wall clock.  The 
problem is that should this catching up be required repeatedly, the simulation will slow 
down, rapidly speed up, slow down, and then rapidly speed up again.  This is undesirable 
behavior for many assets – especially visual systems.  This problem is otherwise known 
as the “flywheel” problem. 
 
Another approach has been to cap the maximum speedup to a preset value.  This allows 
the simulation to catch up smoothly and gradually.  At one time, the maximum speedup 
was hard-code to 2.5%.  However, the maximum time can now be programmed directly 
by the user [TRW02].  Unfortunately, this behavior is not ideal for assets where time 
synchronization is more information (as when interface send electronic stimulation to an 
aircraft during a test).  In fact, the former behavior with the rapid speedup is preferred for 
some exercises. 
 
Hence, since neither approach is best for all cases, the current implementation allows the 
user to determine the approach employed. 

Conclusion 
This paper has discussed the Joint Integrated Mission Model (JIMM) and the Simulated 
Warfare Environment Data Transfer (SWEDAT) protocol.  Problems with dispatch 
mechanism, position and orientation updates, and clock synchronization have been 
discussed.  Work to expand and improve SWEDAT operation continues. 
 
Further information on JIMM and SWEDAT may be obtained from the JIMM Model 
Management Office (JMMO) at <jmmo@navy.mil>. 
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